Login for faster access to the best deals. Click here if you don't have an account.

Intraoperative Invasive Blood Pressure Monitoring and the Potential Pitfalls Contract Job

Feb 24th, 2022 at 07:03   Engineering   Baia Sprie   36 views
Job Details

Invasive intraarterial blood pressure measurement is currently the gold standard for intraoperative hemodynamic monitoring but accurate systolic blood pressure (SBP) measurement is difficult in everyday clinical practice, mostly because of problems with hyper-resonance or damping within the measurement system, which can lead to erroneous treatment decisions if these phenomena are not recognized. A hyper-resonant blood pressure trace significantly overestimates true systolic blood pressure while underestimating the diastolic pressure. Invasively measured systolic blood pressure is also significantly more affected than mean blood pressure by the site of measurement within the arterial system. Patients in the intraoperative period should be treated based on the invasively measured mean blood pressure rather than the systolic blood pressure. In this review, we discuss the pros/cons, mechanisms of Disposable IBP Transducers, and the interpretation of the invasively measured systolic blood pressure value.

Introduction & Background

Disposable IBP Transducer Kit-Single Channel is the gold standard of arterial pressure measurement in 10-20% of high-risk patients [1-2]. In the remaining 80%-90% of surgical patients, the standard intermittent non-invasive blood pressure (BP) that is obtained using oscillometry with a brachial cuff has been shown to have only poor agreement with IBP in critically ill patients [3-4]. These observed measurement differences are clinically significant because they would have triggered a change in treatment in as many as 20% of the critical care patients. Non-invasive oscillometric BP measurement with a brachial cuff tends to, on average, overestimate BP during hypotension and underestimate BP during hypertension, with a significant bias and considerable scatter. Invasive BP measurement with an arterial catheter, providing continuous BP measurements, detected nearly twice as many episodes of hypotension as intermittent oscillometric measurements with a brachial cuff [5]. Continuous rather than intermittent hemodynamic monitoring is highly desirable in high-risk patients. Even when continuous BP monitoring was accomplished in medium-risk patients with non-invasive techniques, the number of episodes of intraoperative hypotension was still reduced by half when compared to intermittent monitoring with a brachial cuff [6]. Although non-invasive continuous monitoring has fewer complications than arterial cannulation, it has not yet Disposable IBP Transducer Kit-Double Channel as the gold standard in high-risk patients, but rather serves as an alternative in low and medium-risk patients where IBP measurements are not warranted [7].

How is IBP measured?

Disposable IBP Transducer Kit-Triple Channel, in essence, replaces a small part of the wall of an artery with a stiff membrane inside a pressure transducer. To achieve this, it requires the cannulation of an artery with a stiff short catheter and the use of a short and stiff tube to connect the cannula to the transducer. In order to measure pressure, a hydrostatic reference level needs to be defined - usually, this is the level of the right atrium - and the transducer needs to be kept at the correct reference level all the time. Each component of the measurement system - transducer, hydrostatic leveling, cannula, tubing - will introduce inaccuracies or measurement errors.Problems occur in clinical practice when a hyper-resonant IBP Transducer Core Part trace overestimates the SBP and a surgeon decides, for example, to limit the SBP to 100 mmHg when the patient is separating from cardiopulmonary bypass (CPB). If there is insufficient damping in the system, the measured SBP will be 100 mmHg while the MAP at the same time may be too low to provide adequate coronary perfusion. The patient may then have to be placed back urgently and perhaps unnecessarily onto CPB due to the erroneous overestimation of the SBP as a result of this hyperresonance artifact. The effects of resonance and damping must therefore be carefully considered whenever making treatment decisions based on the SBP. If the trace looks hyper-resonant or over-damped, the treatment decisions should be based on the MAP. If clinicians insist on making treatment decisions based on SBP then the damping within the measurement system must first be optimized before it is safe to use SBP to guide therapy. 


Company Description